Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 21, 2026
-
Meka, Raghu (Ed.)The Cohn-Umans (FOCS '03) group-theoretic framework for matrix multiplication produces fast matrix multiplication algorithms from three subsets of a finite group G satisfying a simple combinatorial condition (the Triple Product Property). The complexity of such an algorithm then depends on the representation theory of G. In this paper we extend the group-theoretic framework to the setting of infinite groups. In particular, this allows us to obtain constructions in Lie groups, with favorable parameters, that are provably impossible in finite groups of Lie type (Blasiak, Cohn, Grochow, Pratt, and Umans, ITCS '23). Previously the Lie group setting was investigated purely as an analogue of the finite group case; a key contribution in this paper is a fully developed framework for obtaining bona fide matrix multiplication algorithms directly from Lie group constructions. As part of this framework, we introduce "separating functions" as a necessary new design component, and show that when the underlying group is G = GL_n, these functions are polynomials with their degree being the key parameter. In particular, we show that a construction with "half-dimensional" subgroups and optimal degree would imply ω = 2. We then build up machinery that reduces the problem of constructing optimal-degree separating polynomials to the problem of constructing a single polynomial (and a corresponding set of group elements) in a ring of invariant polynomials determined by two out of the three subgroups that satisfy the Triple Product Property. This machinery combines border rank with the Lie algebras associated with the Lie subgroups in a critical way. We give several constructions illustrating the main components of the new framework, culminating in a construction in a special unitary group that achieves separating polynomials of optimal degree, meeting one of the key challenges. The subgroups in this construction have dimension approaching half the ambient dimension, but (just barely) too slowly. We argue that features of the classical Lie groups make it unlikely that constructions in these particular groups could produce nontrivial bounds on ω unless they prove ω = 2. One way to get ω = 2 via our new framework would be to lift our existing construction from the special unitary group to GL_n, and improve the dimension of the subgroups from (dim G)/2 - Θ(n) to (dim G)/2 - o(n).more » « lessFree, publicly-accessible full text available January 1, 2026
-
Guruswami, Venkatesan (Ed.)We study the complexity of isomorphism problems for d-way arrays, or tensors, under natural actions by classical groups such as orthogonal, unitary, and symplectic groups. These problems arise naturally in statistical data analysis and quantum information. We study two types of complexity-theoretic questions. First, for a fixed action type (isomorphism, conjugacy, etc.), we relate the complexity of the isomorphism problem over a classical group to that over the general linear group. Second, for a fixed group type (orthogonal, unitary, or symplectic), we compare the complexity of the isomorphism problems for different actions. Our main results are as follows. First, for orthogonal and symplectic groups acting on 3-way arrays, the isomorphism problems reduce to the corresponding problems over the general linear group. Second, for orthogonal and unitary groups, the isomorphism problems of five natural actions on 3-way arrays are polynomial-time equivalent, and the d-tensor isomorphism problem reduces to the 3-tensor isomorphism problem for any fixed d >= 3. For unitary groups, the preceding result implies that LOCC classification of tripartite quantum states is at least as difficult as LOCC classification of d-partite quantum states for any d. Lastly, we also show that the graph isomorphism problem reduces to the tensor isomorphism problem over orthogonal and unitary groups.more » « less
-
Antonis Achilleos; Dario Della Monica (Ed.)In this paper, we explore the descriptive complexity theory of finite groups by examining the power of the second Ehrenfeucht-Fraisse bijective pebble game in Hella's (Ann. Pure Appl. Log., 1989) hierarchy. This is a Spoiler-Duplicator game in which Spoiler can place up to two pebbles each round. While it trivially solves graph isomorphism, it may be nontrivial for finite groups, and other ternary relational structures. We first provide a novel generalization of Weisfeiler-Leman (WL) coloring, which we call 2-ary WL. We then show that the 2-ary WL is equivalent to the second Ehrenfeucht-Fraisse bijective pebble game in Hella's hierarchy. Our main result is that, in the pebble game characterization, only O(1) pebbles and O(1) rounds are sufficient to identify all groups without Abelian normal subgroups (a class of groups for which isomorphism testing is known to be in P; Babai, Codenotti, & Qiao, ICALP 2012). In particular, we show that within the first few rounds, Spoiler can force Duplicator to select an isomorphism between two such groups at each subsequent round. By Hella's results (ibid.), this is equivalent to saying that these groups are identified by formulas in first-order logic with generalized 2-ary quantifiers, using only O(1) variables and O(1) quantifier depth.more » « less
-
In this paper we study some classical complexity-theoretic questions regarding GroupIsomorphism(GpI). We focus onp-groups (groups of prime power order) with oddp, which are believed to be a bottleneck case for GpI, and work in the model of matrix groups over finite fields. Our main results are as follows. •Although search-to-decision and counting-to-decision reductions have been known for over four decades for GraphIsomorphism(GI), they had remained open for GpI, explicitly asked by Arvind & Torán (Bull. EATCS, 2005). Extending methods from TensorIsomorphism(Grochow & Qiao, ITCS 2021), we show moderately exponential-time such reductions withinp-groups of class 2 and exponentp.•Despitethe widely held belief thatp-groups of class 2 and exponentpare the hardest cases of GpI, there was no reduction to these groups from any larger class of groups. Again using methods from Tensor Isomorphism (ibid.), we show the first such reduction, namely from isomorphism testing ofp-groups of “small” class and exponentpto those of class two and exponentp. For the first results, our main innovation is to develop linear-algebraic analogues of classical graph coloring gadgets, a key technique in studying the structural complexity ofGI. Unlike the graph coloring gadgets, which support restricting to various subgroups of the symmetric group, the problems we study require restricting to various subgroups of the general linear group, which entails significantly different and more complicated gadgets. The analysis of one of our gadgets relies on a classical result from group theory regarding random generation of classical groups (Kantor & Lubotzky, Geom. Dedicata, 1990). For the nilpotency class reduction, we combine a runtime analysis of the Lazard correspondence with TensorIsomorphism-completeness results (Grochow & Qiao, ibid.).more » « less
-
The relationship between the thermodynamic and computational properties of physical systems has been a major theoretical interest since at least the 19th century. It has also become of increasing practical importance over the last half-century as the energetic cost of digital devices has exploded. Importantly, real-world computers obey multiple physical constraints on how they work, which affects their thermodynamic properties. Moreover, many of these constraints apply to both naturally occurring computers, like brains or Eukaryotic cells, and digital systems. Most obviously, all such systems must finish their computation quickly, using as few degrees of freedom as possible. This means that they operate far from thermal equilibrium. Furthermore, many computers, both digital and biological, are modular, hierarchical systems with strong constraints on the connectivity among their subsystems. Yet another example is that to simplify their design, digital computers are required to be periodic processes governed by a global clock. None of these constraints were considered in 20th-century analyses of the thermodynamics of computation. The new field of stochastic thermodynamics provides formal tools for analyzing systems subject to all of these constraints. We argue here that these tools may help us understand at a far deeper level just how the fundamental thermodynamic properties of physical systems are related to the computation they perform.more » « lessFree, publicly-accessible full text available November 5, 2025
-
Abstract There is no single canonical polynomial-time version of the Axiom of Choice (AC); several statements of AC that are equivalent in Zermelo-Fraenkel (ZF) set theory are already inequivalent from a constructive point of view, and are similarly inequivalent from a complexity-theoretic point of view. In this paper we show that many classical formulations of AC, when restricted to polynomial time in natural ways, are equivalent to standard complexity-theoretic hypotheses, including several that were of interest to Selman. This provides a unified view of these hypotheses, and we hope provides additional motivation for studying some of the lesser-known hypotheses that appear here. Additionally, because several classical forms of AC are formulated in terms of cardinals, we develop a theory of polynomial-time cardinality. Nerode & Remmel (Contemp. Math.106, 1990 and Springer Lec. Notes Math. 1432, 1990) developed a related theory, but restricted to unary sets. Downey (Math. Reviews MR1071525) suggested that such a theory over larger alphabets could have interesting connections to more standard complexity questions, and we illustrate some of those connections here. The connections between AC, cardinality, and complexity questions also allow us to highlight some of Selman’s work. We hope this paper is more of a beginning than an end, introducing new concepts and raising many new questions, ripe for further research.more » « less
-
Ta-Shma, Amnon (Ed.)The Tensor Isomorphism problem (TI) has recently emerged as having connections to multiple areas of research within complexity and beyond, but the current best upper bound is essentially the brute force algorithm. Being an algebraic problem, TI (or rather, proving that two tensors are non-isomorphic) lends itself very naturally to algebraic and semi-algebraic proof systems, such as the Polynomial Calculus (PC) and Sum of Squares (SoS). For its combinatorial cousin Graph Isomorphism, essentially optimal lower bounds are known for approaches based on PC and SoS (Berkholz & Grohe, SODA '17). Our main results are an Ω(n) lower bound on PC degree or SoS degree for Tensor Isomorphism, and a nontrivial upper bound for testing isomorphism of tensors of bounded rank. We also show that PC cannot perform basic linear algebra in sub-linear degree, such as comparing the rank of two matrices (which is essentially the same as 2-TI), or deriving BA=I from AB=I. As linear algebra is a key tool for understanding tensors, we introduce a strictly stronger proof system, PC-Inv, which allows as derivation rules all substitution instances of the implication AB=I → BA=I. We conjecture that even PC-Inv cannot solve TI in polynomial time either, but leave open getting lower bounds on PC-Inv for any system of equations, let alone those for TI. We also highlight many other open questions about proof complexity approaches to TI.more » « less
-
Tauman Kalai, Yael (Ed.)In 2003, Cohn and Umans proposed a group-theoretic approach to bounding the exponent of matrix multiplication. Previous work within this approach ruled out certain families of groups as a route to obtaining ω = 2, while other families of groups remain potentially viable. In this paper we turn our attention to matrix groups, whose usefulness within this framework was relatively unexplored. We first show that groups of Lie type cannot prove ω = 2 within the group-theoretic approach. This is based on a representation-theoretic argument that identifies the second-smallest dimension of an irreducible representation of a group as a key parameter that determines its viability in this framework. Our proof builds on Gowers' result concerning product-free sets in quasirandom groups. We then give another barrier that rules out certain natural matrix group constructions that make use of subgroups that are far from being self-normalizing. Our barrier results leave open several natural paths to obtain ω = 2 via matrix groups. To explore these routes we propose working in the continuous setting of Lie groups, in which we develop an analogous theory. Obtaining the analogue of ω = 2 in this potentially easier setting is a key challenge that represents an intermediate goal short of actually proving ω = 2. We give two constructions in the continuous setting, each of which evades one of our two barriers.more » « less
An official website of the United States government

Full Text Available